5 research outputs found

    Capacity Enhancement in 60 GHz Based D2D Networks by Relay Selection and Scheduling

    Get PDF
    Millimeter-wave or 60 GHz communication is a promising technology that enables data rates in multigigabits. However, its tremendous propagation loss and signal blockage may severely affect the network throughput. In current data-centric device-to-device (D2D) communication networks, the devices with intended data communications usually lay in close proximity, unlike the case in voice-centric networks. So the network can be visualized as a naturally formed groups of devices. In this paper, we jointly consider resource scheduling and relay selection to improve network capacity in 60 GHz based D2D networks. Two types of transmission scenarios are considered in wireless personal area networks (WPANs), intra and intergroup. A distributed receiver based relay selection scheme is proposed for intragroup transmission, while a distance based relay selection scheme is proposed for intergroup transmission. The outage analysis of our proposed relay selection scheme is provided along with the numerical results. We then propose a concurrent transmission scheduling algorithm based on vertex coloring technique. The proposed scheduling algorithm employs time and space division in mmWave WPANs. Using vertex multicoloring, we allow transmitter-receiver (Tx-Rx) communication pairs to span over more colors, enabling better time slot utilization. We evaluate our scheduling algorithm in single-hop and multihop scenarios and discover that it outperforms other schemes by significantly improving network throughput

    Improved Resource Allocation in 5G MTC Networks

    Get PDF
    Effective resource allocation has always been one of the serious challenges in wireless communication. A considerable number of machine type communication (MTC) devices in 5G with variable quality of service (QoS) aggravates this challenge even further. Existing Resource allocation schemes in MTC are usually considering signal to noise ratio (SNR), which provides preference to MTC devices based on distance rather than their QoS requirements. This paper proposes a resource allocation scheme with dynamic priorities for MTC devices with multiple radio access technologies (RATs). The proposed resource allocation scheme has two main parts namely medium access and resource allocation. The medium access leverages the broadcast nature of wireless signal and MTC devices' wait time to assign priorities using capillary band in a secure and integral way. At resource allocation, SNR, total induced transmission delay, and transmission-Awaiting MTC devices are used to assign resources in the cellular band. The rumination of two-staged dynamic priorities in the proposed scheduling scheme brings significant performance improvements in outage and success probabilities. Compared to SNR-based schemes, the proposed mechanism performs well by expressively improving the outage and success probability by 20% and 30%, respectively.1

    RCER: Reliable Cluster-based Energy-aware Routing protocol for heterogeneous Wireless Sensor Networks.

    No full text
    Nowadays, because of the unpredictable nature of sensor nodes, propagating sensory data raises significant research challenges in Wireless Sensor Networks (WSNs). Recently, different cluster-based solutions are designed for the improvement of network stability and lifetime, however, most of the energy efficient solutions are developed for homogeneous networks, and use only a distance parameter for the data communication. Although, some existing solutions attempted to improve the selection of next-hop based on energy factor, nevertheless, such solutions are unstable and lack a reducing data delivery interruption in overloaded links. The aim of our proposed solution is to develop Reliable Cluster-based Energy-aware Routing (RCER) protocol for heterogeneous WSN, which lengthen network lifetime and decreases routing cost. Our proposed RCER protocol make use of heterogeneity nodes with respect to their energy and comprises of two main phases; firstly, the network field is parted in geographical clusters to make the network more energy-efficient and secondly; RCER attempts optimum routing for improving the next-hop selection by considering residual-energy, hop-count and weighted value of Round Trip Time (RTT) factors. Moreover, based on computing the measurement of wireless links and nodes status, RCER restore routing paths and provides network reliability with improved data delivery performance. Simulation results demonstrate significant development of RCER protocol against their competing solutions
    corecore